Statistics I:
 Chapter 5 - Expected values of functions of bi-dimensional random variables
 23/04/2020

Carlos Oliveira

E-mail: carlosoliveira@iseg.ulisboa.pt
ISEG - Lisbon School of Economics and Management

Let (X, Y) be a two-dimensional random variable and $D_{(X, Y)}$ the set of points of discontinuity of the joint cumulative distribution function $F_{X, Y}(x, y)$.

Definition: Let $g(X, Y)$ be a function of the two-dimensional random variable (X, Y). Then, the expected value of $g(X, Y)$ is given by

- (X, Y) is a two-dimensional discrete random variable:

$$
E[g(X, Y)]=\sum_{(x, y) \in D_{(x, Y)}} g(x, y) f_{X, Y}(x, y)
$$

provided that $\sum_{(x, y) \in D_{(x, r)}}|g(x, y)| f_{X, Y}(x, y)<+\infty$.

- (X, Y) is a two-dimensional continuous random variable:

$$
E[g(X, Y)]=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x, y) f_{X, Y}(x, y) d x d y
$$

provided that $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}|g(x, y)| f(x, y) d x d y<+\infty$.

Example: Let (X, Y) be a discrete bidimensional random variable such that

$$
f_{X, Y}(x, y)= \begin{cases}x, & 0<x<1,0<y<2 \\ 0, & \text { otherwise }\end{cases}
$$

Compute the expected value of $g(X, Y)=X+Y$. Answer: Using the definition of expected value, one gets

$$
\begin{aligned}
E(X+Y) & =\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}(x+y) f_{X, Y}(x, y) d x d y \\
& =\int_{0}^{2} \int_{0}^{1} x(x+y) d x d y \\
& =\int_{0}^{2} \frac{1}{3}+\frac{y}{2} d y=\frac{5}{3}
\end{aligned}
$$

Theorem: Let (X, Y) be a discrete two-dimensional random variable with joint probability function $f_{X, Y}(x, y)$:
(1) If $g(X, Y)=h(X)$ that is $g(X, Y)$ only depends on X, then

$$
\begin{aligned}
E(g(X, Y)) & =E[h(X)]=\sum_{(x, y) \in D_{(x, r)}} h(x) f_{X, Y}(x, y) \\
& =\sum_{x \in D_{X}} h(x) \sum_{y \in D_{Y}} f_{X, Y}(x, y)=\sum_{x \in D_{X}} h(x) f_{X}(x)
\end{aligned}
$$

provided that $\sum_{(x, y) \in D_{(x, Y)}}|h(x)| f_{X, Y}(x, y)<+\infty$.
(2) If $g(X, Y)=v(Y)$ that is $g(X, Y)$ only depends on Y, then

$$
\begin{aligned}
E[v(Y)] & =\sum_{(x, y) \in D_{(x, r)}} v(y) f_{X, Y}(x, y) \\
& =\sum_{y \in D_{Y}} v(y) \sum_{x \in D_{X}} f_{X, Y}(x, y)=\sum_{y \in D_{Y}} v(y) f_{Y}(y)
\end{aligned}
$$

provided that $\sum_{(x, y) \in D_{(x, y)}}|v(y)| f_{X, Y}(x, y)<+\infty$.

Example: Let (X, Y) be a two-dimensional random variable such that

$$
f_{X, Y}= \begin{cases}\frac{1}{5}, & x=1,2, y=0,1,2, y \leq x \\ 0, & \text { otherwise }\end{cases}
$$

Compute the expected value of X.

Solution:

(i) By using the joint probability function:

$$
\begin{aligned}
E(X) & =\sum_{(x, y) \in D_{(x, y)}} x f_{X, Y}(x, y)=\sum_{x=1}^{2} \sum_{y=0}^{x} \frac{1}{5} x \\
& =\frac{8}{5}
\end{aligned}
$$

Example: Let (X, Y) be a two-dimensional random variable such that

$$
f_{X, Y}= \begin{cases}\frac{1}{5}, & x=1,2, y=0,1,2, y \leq x \\ 0, & \text { otherwise }\end{cases}
$$

Compute the expected value of X.

Solution:

(ii) By using the marginal function:

$$
f_{X}(x)=\sum_{y=0}^{x} f_{X, Y}(x, y)=\left\{\begin{array}{ll}
\frac{2}{5}, & x=1 \\
\frac{3}{5}, & x=2 \\
0, & \text { otherwise }
\end{array} .\right.
$$

Therefore,

$$
E(X)=\sum_{x=1}^{2} x f_{X}(x)=1 \times \frac{2}{5}+2 \times \frac{3}{5}=\frac{8}{5} .
$$

Theorem: Let (X, Y) be a continuous two-dimensional random variable with joint probability function $f_{X, Y}(x, y)$:

- If $g(X, Y)=h(X)$ that is $g(X, Y)$ only depends on X, then

$$
\begin{aligned}
E[h(X)] & =\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} h(x) f_{X, Y}(x, y) d x d y \\
& =\int_{-\infty}^{+\infty} h(x)\left(\int_{-\infty}^{+\infty} f_{X, Y}(x, y) d y\right) d x=\int_{-\infty}^{+\infty} h(x) f_{X}(x) d x
\end{aligned}
$$

provided that $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}|h(x)| f_{X, Y}(x, y) d x d y<+\infty$.

- If $g(X, Y)=v(Y)$ that is $g(X, Y)$ only depends on Y, then

$$
\begin{aligned}
E[v(Y)] & =\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} v(y) f_{X, Y}(x, y) d x d y \\
& =\int_{-\infty}^{+\infty} v(y)\left(\int_{-\infty}^{+\infty} f_{X, Y}(x, y) d x\right) d y=\int_{-\infty}^{+\infty} v(Y) f_{Y}(y) d y
\end{aligned}
$$

provided that $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}|v(y)| f_{X, Y}(x, y) d x d y<+\infty$.

Example: Let (X, Y) be a discrete bidimensional random variable such that

$$
f_{X, Y}(x, y)= \begin{cases}x, & 0<x<1,0<y<2 \\ 0, & \text { otherwise }\end{cases}
$$

Compute the expected value of $3 X+2$.
Answer:
(i) Using the joint density function.

Using the definition of marginal expected value, one gets

$$
\begin{aligned}
E(3 X+2) & =3 E(X)+2=3 \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x f_{X, Y}(x, y) d x d y+2 \\
& =3 \int_{0}^{2} \int_{0}^{1} x^{2} d x d y+2 \\
& =3 \int_{0}^{2} \frac{1}{3} d y+2=4
\end{aligned}
$$

Example: Let (X, Y) be a discrete bidimensional random variable such that

$$
f_{X, Y}(x, y)= \begin{cases}x, & 0<x<1,0<y<2 \\ 0, & \text { otherwise }\end{cases}
$$

Compute the expected value of $3 X+2$.

Answer:

(ii) Using the marginal density function.

The marginal density function of X is given by

$$
f_{X}(x)=\int_{-\infty}^{\infty} f_{X, Y}(x, y) d y= \begin{cases}2 x, & 0<x<1 \\ 0, & \text { otherwise }\end{cases}
$$

Therefore, $E(3 X+2)=3 E(X)+2=4$, because

$$
E(X)=\int_{-\infty}^{+\infty} x f_{X}(x) d x=\int_{0}^{1} 2 x^{2} d x=\frac{2}{3}
$$

Properties:

(1) $E[h(X)+v(Y)]=E[h(X)]+E[v(Y)]$ provided that $E[|h(X)|]<+\infty, E[|v(Y)|]<+\infty$
(2) $E\left[\sum_{i=1}^{N} X_{i}\right]=\sum_{i=1}^{N} E\left[X_{i}\right]$, where N is a finite integer, provided that $E\left[\left|X_{i}\right|\right]<+\infty$ for $i=1,2, \ldots, N$.

Example:Let (X, Y) be a discrete bidimensional random variable such that

$$
f_{X, Y}(x, y)= \begin{cases}x, & 0<x<1,0<y<2 \\ 0, & \text { otherwise }\end{cases}
$$

Compute the expected value of Y.
Answer: We know that $E(X+Y)=E(X)+E(Y)=\frac{5}{3}$. Since $E(X)=\frac{2}{3}$, then we get that $E(Y)=1$.

Definition: The r th and s th moment of products about the origin of the random variables X and Y, denoted by $\mu_{r, s}^{\prime}$ is the expected value of $X^{r} Y^{s}$, for $r=1,2, \ldots ; s=1,2, \ldots$ which is given by

- if X and Y are discrete random variables:

$$
\mu_{r, s}^{\prime}=E\left[X^{r} Y^{s}\right]=\sum_{(x, y) \in D_{(X, Y)}} x^{r} y^{s} f_{X, Y}(x, y)
$$

- if X and Y are continuous random variables:

$$
\mu_{r, s}^{\prime}=E\left[X^{r} Y^{s}\right]=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x^{r} y^{s} f(x, y) d x d y
$$

Remarks:

- If $r=s=1$, we have $\mu_{1,1}^{\prime}=E[X Y]$
- Cauchy-Schwarz Inequality: For any two random variables X and Y, we have $|E[X Y]| \leq E\left[X^{2}\right]^{1 / 2} E\left[Y^{2}\right]^{1 / 2}$ provided that $E[|X Y|]$ is finite.
- If X and Y are independent random variables, $E[h(X) v(Y)]=E(h(X)) E(v(Y))$ for any two functions $h(X)$ and $v(Y)$.
[Warning: The reverse is not true.]
- If $X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables independent, $E\left[X_{1} X_{2} \ldots X_{n}\right]=E\left(X_{1}\right) E\left(X_{2}\right) \ldots E\left(X_{n}\right)$.
[Warning: The reverse is not true.]

Definition: The r th and s th moment of products about the mean of the discrete random variables X and Y, denoted by $\mu_{r, s}$ is the expected value of $\left(X-\mu_{X}\right)^{r}\left(Y-\mu_{Y}\right)^{s}$, for $r=1,2, \ldots ; s=1,2, \ldots$ which is given by

$$
\begin{aligned}
\mu_{r, s} & =E\left[\left(X-\mu_{X}\right)^{r}\left(Y-\mu_{Y}\right)^{s}\right] \\
& =\sum_{(x, y) \in D_{(X, Y)}}\left(x-\mu_{X}\right)^{r}\left(y-\mu_{Y}\right)^{s} f_{X, Y}(x, y)
\end{aligned}
$$

Definition: The r th and s th moment of products about the mean of the continuous random variables X and Y, denoted by $\mu_{r, s}$, for $r=1,2, \ldots ; s=1,2, \ldots$ is given by

$$
\begin{aligned}
\mu_{r, s} & =E\left[\left(X-\mu_{X}\right)^{r}\left(Y-\mu_{Y}\right)^{s}\right] \\
& =\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}\left(x-\mu_{X}\right)^{r}\left(y-\mu_{Y}\right)^{s} f(x, y) d x d y
\end{aligned}
$$

The covariance is a measure of the joint variability of two random variables. Formally it is defined as

$$
\operatorname{Cov}(X, Y)=\sigma_{X Y}=\mu_{1,1}=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]
$$

How can we interpret the covariance?

- When the variables tend to show similar behavior, the covariance is positive:
- If high (small) values of one variable mainly correspond to high (small) values of the other variable;
- When the variables tend to show opposite behavior, the covariance is negative:
- When high (small) values of one variable mainly correspond to low (high) values of the other;
- If there is no linear association, then the covariance will be zero.

Properties:

- $\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)$.
- If X and Y are independent $\operatorname{Cov}(X, Y)=0$.
- If $Y=b Z$, where b is constant,

$$
\operatorname{Cov}(X, Y)=b \operatorname{Cov}(X, Z)
$$

- If $Y=V+W$,

$$
\operatorname{Cov}(X, Y)=\operatorname{Cov}(X, V)+\operatorname{Cov}(X, W)
$$

- If $Y=b$, where b is constant,

$$
\operatorname{Cov}(X, Y)=0
$$

- If follows from the Cauchy-Schwarz Inequality that $|\operatorname{Cov}(X, Y)| \leq \sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}$.

The covariance has the inconvenient of depending on the scale of both random variables. For what values of the covariance can we say that there is a strong association between the two random variables? The correlation coefficient is a measure of the joint variability of two random variables that do not depend on the scale:

$$
\rho_{X, Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}} .
$$

Properties:

- If follows from the Cauchy-Schwarz Inequality that $-1 \leq \rho_{X, Y} \leq 1$.
If $Y=b X+a$, where b and a are constants
- $\rho_{X, Y}=1$ if $b>0$.
- $\rho_{X, Y}=-1$ if $b<0$.
- If $b=0$, it is not defined.

Summary of important results:

- If $Y=V \pm W$,

$$
\operatorname{Var}(Y)=\operatorname{Var}(V)+\operatorname{Var}(W) \pm 2 \operatorname{Cov}(V, W)
$$

- If X_{1}, \ldots, X_{n} are random variables and a_{1}, \ldots, a_{n} are constants and $Y=\sum_{i=1}^{n} a_{i} X_{i}$, then

$$
\operatorname{Var}(Y)=\sum_{i=1}^{n} a_{i}^{2} \operatorname{Var}\left(X_{i}\right)+2 \underbrace{\sum_{i=1}^{n} \sum_{j=1, j<i}^{n} a_{i} a_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)}_{=0, \text { if } X_{i}, X_{j} \text { are independent }}
$$

- If X_{1}, \ldots, X_{n} are random variables, a_{1}, \ldots, a_{n} are constants and b_{1}, \ldots, b_{n} are constants, $Y_{1}=\sum_{i=1}^{n} a_{i} X_{i}$, and $Y_{2}=\sum_{i=1}^{n} b_{i} X_{i}$ then
$\operatorname{Cov}\left(Y_{1}, Y_{2}\right)=\sum_{i=1}^{n} a_{i} b_{i} \operatorname{Var}\left(X_{i}\right)+\underbrace{\sum_{i=1}^{n} \sum_{j=1, j<i}^{n}\left(a_{i} b_{j}+a_{j} b_{i}\right) \operatorname{Cov}\left(X_{i}, X_{j}\right)}_{=0, \text { if } X_{i}, X_{j} \text { are independent }}$.

Definition: Let (X, Y) be a two dimensional random variable and $u(Y, X)$ a function of Y and X. Then, the conditional expectation of $u(Y, X)$ given $X=x$, is given by

- if X and Y are discrete random variables

$$
E[u(Y, X) \mid X=x]=\sum_{y \in D_{Y}} u(y, x) f_{Y \mid X=x}(y)
$$

where D_{Y} is the set of discontinuity points of $F_{Y}(y)$ and $f_{Y \mid X=x}(y)$ is the value of the conditional probability function of Y given $X=x$ at y

- if X and Y are continuous random variables

$$
E[u(Y, X) \mid X=x]=\int_{-\infty}^{+\infty} u(y, x) f_{Y \mid X=x}(y) d y
$$

where $f_{Y \mid X=x}(y)$ is the value of the conditional probability density function of Y given $X=x$ at y.
provided that the expected values exist and are finite.

Remarks:

(1) If $u(Y, X)=Y$, then we have the conditional mean of Y, $E[u(Y, X) \mid X=x]=E[Y \mid X=x]=\mu_{Y \mid x}$ (notice that this is a function of x).
(2) If $u(Y, X)=\left(Y-\mu_{Y \mid x}\right)^{2}$, then we have the conditional variance of Y

$$
\begin{aligned}
E[u(Y, X) \mid X=x] & =E\left[\left(Y-\mu_{Y \mid x}\right)^{2} \mid X=x\right] \\
& =E\left[(Y-E[u(Y) \mid X=x])^{2} \mid X=x\right] \\
& =\operatorname{Var}[Y \mid X=x]
\end{aligned}
$$

(3) As usual, $\operatorname{Var}[Y \mid X=x]=E\left[Y^{2} \mid X=x\right]-E[Y \mid X=x]^{2}$.
(4) If Y and X are independent $E(Y \mid X=x)=E(Y)$.
(3) Of course we can reverse the roles of Y and X, that is we can compute $E(u(X, Y) \mid Y=y)$, using definitions similar to those above.

Example: Let (X, Y) be two-dimensional random variable such that

$$
f_{X, Y}(x, y)= \begin{cases}1 / 2, & 0<x<2,0<y<x \\ 0, & \text { c.c. }\end{cases}
$$

Then the conditional density function of $Y \mid X=1$ is given by

$$
\begin{aligned}
f_{Y \mid X=1}(y) & =\left\{\begin{array}{ll}
\frac{f_{X, Y(1, y)}}{f_{X}(1)}, & 0<y<1 \\
0, & \text { c.c. }
\end{array}= \begin{cases}\frac{1 / 2}{1 / 2}, & 0<y<1 \\
0, & \text { c.c. }\end{cases} \right. \\
& = \begin{cases}1, & 0<y<1 \\
0, & \text { c.c. }\end{cases}
\end{aligned}
$$

where

$$
f_{X}(x)=\left\{\begin{array}{ll}
\int_{0}^{x} f_{X, Y}(x, y) d y, & 0<x<2 \\
0, & \text { c.c. }
\end{array}=\left\{\begin{array}{ll}
\frac{x}{2}, & 0<x<2 \\
0, & \text { c.c. }
\end{array} .\right.\right.
$$

Example: The conditional expected value can be computed as follows:

$$
E(Y \mid X=1)=\int_{0}^{1} y f_{Y \mid X=1}(y) d y=\int_{0}^{1} y d y=\frac{1}{2} .
$$

To compute the conditional variance, one may start by computing the following conditional expected value

$$
E\left(Y^{2} \mid X=1\right)=\int_{0}^{1} y^{2} f_{Y \mid X=1}(y) d y=\int_{0}^{1} y^{2} d y=\frac{1}{3}
$$

Therefore

$$
\begin{aligned}
\operatorname{Var}(Y \mid X=1) & =E\left(Y^{2} \mid X=1\right)-(E(Y \mid X=1))^{2} \\
& =\frac{1}{3}-\frac{1}{4}=\frac{1}{12}
\end{aligned}
$$

Example: Let X and Y be two random variables such that

$$
f_{X, Y}(x, y)=\frac{1}{9}, \text { for } x=1,2,3, y=0,1,2,3, y \leq x
$$

To compute the conditional expected value one has to compute the condition probability function:

$$
f_{Y \mid X=1}(y)=\left\{\begin{array}{ll}
\frac{f_{X}, Y(1, Y)}{f_{X}(1)}, & y=0,1 \\
0, & \text { otherwise }
\end{array}= \begin{cases}\frac{1}{2}, & y=0,1 \\
0, & \text { otherwise }\end{cases}\right.
$$

where

$$
f_{X}(1)=\sum_{y=0}^{1} f_{X, Y}(1, y)=\sum_{y=0}^{1} \frac{1}{9}=\frac{2}{9}
$$

Therefore,

$$
E(Y \mid X=1)=\sum_{y \in D_{Y}} y f_{Y \mid X=1}(y)=0 \times \frac{1}{2}+1 \times \frac{1}{2}=\frac{1}{2}
$$

Notice that $g(y)=E(X \mid Y=y)$ is indeed a function of y. Therefore, $g(Y)$ is a random variable because Y can take different values according its distribution, i.e, if Y can take the value y, then $g(Y)$ can take $g(y)$ with probability $P(Y=y)>0$.

- Discrete random variables

The random variable $Z=g(Y)=E(X \mid Y)$ takes the values $g(y)=E(X \mid Y=y)$. Assume that all values of $g(y)$ are different. Then,
Z takes the value $g(y)$ with probability $P(Y=y)$

In general, the probability function of $Z=g(Y)=E(X \mid Y)$ can be computed in the following way

$$
P(Z=z)=P(g(Y)=z)=P(Y \in\{y: g(y)=z\})
$$

Example: Let (X, Y) be a discrete random variable such that $f_{X, Y}(x, y)$ is represented in the following table

X / Y	1	2	3
0	0.2	0.1	0.15
1	0.05	0.35	0.15

One may compute the following conditional probability functions:

$$
f_{Y \mid X=0}=\left\{\begin{array}{ll}
4 / 9, & y=1 \\
2 / 9, & y=2 \\
3 / 9, & y=3 \\
0, & \text { otherwise }
\end{array} \quad \text { and } \quad f_{Y \mid X=1}= \begin{cases}1 / 11, & y=1 \\
7 / 11, & y=2 \\
3 / 11, & y=3 \\
0, & \text { otherwise }\end{cases}\right.
$$

Consequently, $E(Y \mid X=0)=17 / 9$ and $E(Y \mid X=1)=24 / 11$. Therefore, the random variable $Z=E(Y \mid X)$ has the following probability function

$$
P(Z=z)=\left\{\begin{array}{ll}
P(X=0), & z=17 / 9 \\
P(X=1), & z=24 / 11 \\
0, & \text { otherwise }
\end{array}= \begin{cases}0.45, & z=17 / 9 \\
0.55, & z=24 / 11 \\
0, & \text { otherwise }\end{cases}\right.
$$

- Continuous random variables

The cumulative distribution function of $Z=g(Y)=E(X \mid Y)$ is, indeed

$$
F_{Z}(z)=P(Z \leq z)=P(g(Y) \leq z)=P(Y \in\{y: g(y) \leq z\})
$$

When g is an injective function, we get that

$$
F_{Z}(z)=F_{Y}\left(g^{-1}(z)\right) \text { or } F_{Z}(g(y))=F_{Y}(y)
$$

Therefore, we can calculate all the quantities that we know (the expected value, variance, ...) for $E(X \mid Y)$ or $E(Y \mid X)$

Theorem (Law of iterated Expectations) Let (X, Y) be a two dimensional random variable. Then, $E(Y)=E(E[Y \mid X])$ provided that $E(|Y|)$ is finite and $E(X)=E(E[X \mid Y])$ provided that $E(X)$ is finite.

Remark: This theorem shows that there are two ways to compute $E(Y)$ (resp., $E(X)$). The first is the direct way. The second way is to consider the following steps:
(1) compute $E[Y \mid X=x]$ and notice that this is a function solely of x that is we can write $g(x)=E[Y \mid X=x]$,
(2) according to the theorem replacing $g(x)$ by $g(X)$ and taking the mean we obtain $E[g(X)]=E[Y]$ for this specific form of $g(X)$.
(3) This theorem is useful in practice in the calculation of $E(Y)$ if we know $f_{Y \mid X=x}(y)$ or $E[X \mid X=x]$ and $f_{X}(x)$ (or some moments of X), but not $f_{X, Y}(x, y)$.
Remarks: The results presented can be generalized for functions of X and Y, i.e., $E(u(X, Y))=E(E(u(X, Y) \mid X))$, if $E(u(X, Y))$ exists.

Example: Let (X, Y) be a bi-dimensional continuous random variable such that

$$
E(X \mid Y=y)=\frac{3 y-1}{3} \quad \text { and } \quad f_{Y}(y)= \begin{cases}1 / 2, & 0<y<2 \\ 0, & \text { otherwise }\end{cases}
$$

Taking into account the previous theorem,

$$
E(X)=E(E(X \mid Y))=E\left(\frac{3 Y-1}{3}\right)=\int_{0}^{2} \frac{3 y-1}{6} d y=2 / 3 .
$$

Theorem: Assuming that $E\left(Y^{2}\right)$ exists then

$$
\operatorname{Var}(Y)=\operatorname{Var}[E(Y \mid X)]+E[\operatorname{Var}[Y \mid X]] .
$$

Theorem: Let X and Y be two random variables then

$$
\operatorname{Cov}(X, Y)=\operatorname{Cov}(X, E(Y \mid X))
$$

Example: Let (X, Y) be a bidimensional random variable such that

$$
\begin{aligned}
& f_{X \mid Y=y}(x)=\frac{1}{y}, \quad 0<x<y \quad(\text { for a fixed } y>1) \\
& f_{Y}(y)=3 y^{-4}, \quad y>1
\end{aligned}
$$

Compute $\operatorname{Var}(X)$ using the previous theorem.

Exam question: Let X and Y be two random variables such that

$$
E(X \mid Y=y)=y
$$

for all y such that $f_{Y}(y)>0$. Prove that $\operatorname{Cov}(X, Y)=\operatorname{Var}(Y)$. Are the random variables independent? Justify your answer.

